X

什么是EUV光刻机?为什么大家都在追求它?

而光刻的工作原理,大家可以想象一下胶片照片的冲洗,掩膜版就相当于胶片,而光刻机就是冲洗台,它把掩膜版上的芯片电路一个个的复制到光刻胶薄膜上,然后通过刻蚀技术把电路“画”在晶圆上。

而激光器负责光源产生,而光源对制程工艺是决定性影响的,随着半导体工业节点的不断提升,光刻机缩激光波长也在不断的缩小,从436nm、365nm的近紫外(NUV)激光进入到246nm、193nm的深紫外(DUV)激光,现在DUV光刻机是目前大量应用的光刻机,波长是193nm,光源是ArF(氟化氩)准分子激光器,从45nm到10/7nm工艺都可以使用这种光刻机,但是到了7nm这个节点已经的DUV光刻的极限,所以Intel、三星和台积电都会在7nm这个节点引入极紫外光(EUV)光刻技术,而GlobalFoundries当年也曾经研究过7nm EUV工艺,只不过现在已经放弃了。

而使用极紫外光(EUV)作为光源的光刻机就是EUV光刻机,当然这绝对不是单纯只换个光源这么简单。

为什么需要EUV光刻?

现在所用的193nm光源DUV其实是2000年代就开始使用的了,然而在更短波长光源技术上卡住了,157nm波长的光刻技术其实在2003年就有光刻机了,然而对比193nm波长的进步只有25%,但由于157nm的光波会比193nm所用的镜片吸收,镜片和光刻胶都要重新研制,再加上当时成本更低的浸入式193nm技术已经出来了,所以193nm DUV光刻一直用到现在。

当然大家一定想知道为啥同一光源为什么可以衍生出这么多不同工艺节点,以Intel为例,2000年用的是180nm,而现在已经是10nm了,其实光刻机决定了半导体工艺的制程工艺,光刻机的精度跟光源的波长、物镜的数值孔径是有关系的,有公式可以计算:

光刻机分辨率=k1*λ/NA

k1是常数,不同的光刻机k1不同,λ指的是光源波长,NA是物镜的数值孔径,所以光刻机的分辨率就取决于光源波长及物镜的数值孔径,波长越短越好,NA越大越好,这样光刻机分辨率就越高,制程工艺越先进。

最初的浸入式光刻就是很简单的在晶圆光刻胶上加1mm厚的水,水可以把193nm的光波长折射成134nm,后来不断改进高NA镜片、多光照、FinFET、Pitch-split以及波段铃木的光刻胶等技术,一只用到现在的7nm/10nm,但这已经是193nm光刻机的极限了。

在现有技术条件上,NA数值孔径并不容易提升,目前使用的镜片NA值是0.33,大家可能还记得之前有过一个新闻,就是ASML投入20亿美元入股卡尔·蔡司公司,双方将合作研发新的EUV光刻机,许多人不知道EUV光刻机跟蔡司有什么关系,现在应该明白了,ASML跟蔡司合作就是研发NA 0.5的光学镜片,这是EUV光刻机未来进一步提升分辨率的关键,不过高NA的EUV光刻机至少是2025-2030年的事了,还早着呢,光学镜片的进步比电子产品难多了。

NA数值一时间不能提升,所以光刻机就选择了改变光源,用13.5nm波长的EUV取代193nm的DUV光源,这样也能大幅提升光刻机的分辨率。

在上世纪90年代后半期,大家都在寻找取代193nm光刻光源的技术,提出了包括157nm光源、电子束投射、离子投射、X射线和EUV,而从现在的结果来看只有EUV是成功了。当初由Intel和美国能源部牵头,集合了摩托罗拉、AMD等公司还有美国的三大国家实验室组成EUV LLC,ASML也被邀请进入成为EUV LLC的一份子。在1997到2003年间,EUV LLC的几百位科学家发表了大量论文,证明了EUV光刻机的可行性,然后EUV LLC解散。

作为全球唯一一家能EUV光刻机的厂家,ASML自然获得了大量的订单,截止至2019年第二季度,ASML的NEX:3400B EUV光刻机的装机数已经多达38台,而下半年他们推出了效率更高的NEX:3400C光刻机,而在2019年全年一共交付了26套EUV光刻机,为他们带来了27.89亿欧元的收入,占了全年收入的31%,而全年卖了82台的ArFi远紫外光光刻机才进账47.67亿欧元,可见一套EUV光刻机是多么的赚钱。