X

深度学习寻找肺炎病毒宿主:AI“进化”的“一小步”| 新京智库

论文截图

据朱怀球团队的研究表明,新型冠状病毒与云南菊头蝠中存在的RaTG13冠状病毒一致性高达96%;另外,基于深度学习开发的VHP(病毒宿主预测)方法预测的结构化显示,水貂的病毒的传染性模式更接近新型冠状病毒。

据悉,在此次研究中,该团队使用了基于深度学习模型的AI技术寻找病毒宿主。这可能是国内首次在2019新型冠状病毒的研究中使用深度学习AI取得成果。

01

AI加入抗击疫情一线,深度学习寻找病毒宿主

一种前所未知的新型病毒出现后,确定病毒宿主是十分重要的。由于病毒复杂的多样性,目前人类已知的病毒和对病毒本身的了解还远远不够,大多数以人类为宿主的病毒,通常对人类造成生命安全威胁之后,才会进一步引起人们的重视。

对一些本不以人类为宿主的病毒来说,其本身也可能突发变异,或者通过中间宿主也可感染至人类。因此,快速寻找鉴别未知病毒的宿主,能够帮助人类了解病毒与宿主间的相互作用,以应对突发变异等潜在威胁,从而有针对性的对病毒进行预防和控制,具有重要意义。

图片来源:新京报网

实际上,相比传统的AI机器学习方法,AI深度学习的方法训练出的模型可以适用于多种不同类型的数据,还可以结合多种来源的数据,共同完成一个任务。

在基因数据中,并不是所有的数据都有准确的高质量数据标签,而通过深度生成模型,即使没有高质量标签的数据也能得到充分使用,从而使得模型能够持续的提升性能。

因而,从AI深度学习的种类上来看,除了常见的有监督学习和无监督学习,半监督学习与强化学习更适合,也更需要医学界、生物界更多的关注。

03

深度学习AI+医疗:应用前景广阔但也有局限性

在AI的应用场景中,医疗行业是其应用前景最为广阔的行业之一。生物信息领域中,制药企业的药物研发、医疗设备收集的健康数据、病患者的诊断以及治疗方案的确定都有深度学习型AI的应用需求。

深度学习的本质,是一个复杂的AI学习算法。目前,深度学习应用最为广泛的是在计算机视觉以及语言识别领域。其中计算机视觉技术在医疗领域也有一定的应用,如医学影像的识别。

不过,深度学习在医疗领域的应用也面临现实应用的局限性,其中之一就是分析过程缺乏解释性。实际上,深度学习本质上也是统计学习的一种,通过对已知数据的汇总和检索,以算法的优化达到某种结果的预测。

图片来源:新京报网

在数据时代,AI深度学习与算法、大数据的进步与发展将使得人类迎来一个全新的时代,在肆虐的病毒面前,人类并不会无动于衷。在当前新型冠状病毒暴发的艰难时刻,更需要人们充满信心,以更加顽强的勇气和智慧,以面对新型病毒的挑战!

□刘志刚(互联网分析师)

编辑:李碧莹 校对:王心

投稿、合作、联系我们:futurecity@xjbsmartcity.com